A General Iterative Algorithm for Nonexpansive Mappings in Banach Spaces

نویسندگان

  • BASHIR ALI
  • GODWIN C. UGWUNNADI
  • YEKINI SHEHU
چکیده

Let E be a real q-uniformly smooth Banach space whose duality map is weakly sequentially continuous. Let T : E → E be a nonexpansive mapping with F (T ) 6= ∅. Let A : E → E be an η-strongly accretive map which is also κ-Lipschitzian. Let f : E → E be a contraction map with coefficient 0 < α < 1. Let a sequence {yn} be defined iteratively by y0 ∈ E, yn+1 = αnγf(yn) + (I − αnμA)Tyn, n ≥ 0, where {αn}, γ and μ satisfy some appropriate conditions. Then, we prove that {yn} converges strongly to the unique solution x∗ ∈ F (T ) of the variational inequality 〈(γf−μA)x∗, j(y− x∗)〉 ≤ 0, ∀ y ∈ F (T ). Convergence of the correspondent implicit scheme is also proved without the assumption that E has weakly sequentially continuous duality map. Our results are applicable in lp spaces, 1 < p <∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

متن کامل

Strong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings

In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space  with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p

متن کامل

A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.

متن کامل

Common fixed points of a finite family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces

In this paper, we introduce a one-step iterative scheme for finding a common fixed point of a finite family of multivalued quasi-nonexpansive mappings in a real uniformly convex Banach space. We establish weak and strong convergence theorems of the propose iterative scheme under some appropriate conditions.

متن کامل

Convergence results‎: ‎A new type iteration scheme for two asymptotically nonexpansive mappings in uniformly convex Banach spaces

‎In this article‎, ‎we introduce a new type iterative scheme for‎ ‎approximating common fixed points of two asymptotically‎ ‎nonexpansive mappings is defined‎, ‎and weak and strong convergence‎ ‎theorem are proved for the new iterative scheme in a uniformly‎ ‎convex Banach space‎. ‎The results obtained in this article‎ ‎represent an extension as well as refinement of previous known‎ ‎resu...

متن کامل

Approximating fixed points for nonexpansive mappings and generalized mixed equilibrium problems in Banach spaces

We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011